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Nearly 200 years later no one doubts the empirical standing
of Fourier's law [...] No one has yet managed to derive
Fourier's law from truely fundamental principles.

Mark Buchanan, Nature Physics (Nov. 2005)
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Introduction

n and Relaxation

Fourier's Law

Heat Conduction Experiment
(Deutsches Museum Miunchen)

Jean Baptiste Joseph Fourier

(1768 - 1830) @ local temperature (no global
temperature)

@ constant heat current
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Heat Conduction Experiment
(Deutsches Museum Miunchen)

Jean Baptiste Joseph Fourier

(1768 - 1830) @ local temperature (no global
Fourier's Law temperature)

linear connection between gradient @ constant heat current
VT and heat current j

J=—kVT

heat conductivity s
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Heat Conduction Experiment
(Deutsches Museum Miunchen)

Jean Baptiste Joseph Fourier

(1768 - 1830) @ local temperature (no global
Fourier's Law temperature)
linear connection between gradient @ constant heat current
VT and heat current j . . » ;
4 Prize of Paris Institute of Mathematics
Jj=-kVT ... the manner in which the author

arrives at these equations is not exempt

nenic comdwanny = of difficulties ... (prize committee)
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Difl n and Relaxation

Microscopic Foundation |

[0 Microscopic formula for the heat conductivity
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Introduction

Fourier's Law
Diffusion and Relaxation

Microscopic Foundation |

[0 Microscopic formula for the heat conductivity

Peter J. W. Debye (1884-1966)

@ particle current in solids with mean velocity v
(e.g. electrons)

@ heat current j oc nVCcAT (n particle density; ¢ heat
capacity)

@ heat transport in conductors; what is about insulators?

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



Introduction

Fourier's Law
Diffusion and R

Microscopic Foundation |

[0 Microscopic formula for the heat conductivity

Peter J. W. Debye (1884-1966)

@ particle current in solids with mean velocity v
(e.g. electrons)

@ heat current j oc nVCcAT (n particle density; ¢ heat
capacity)

@ heat transport in conductors; what is about insulators?
ot

Sir Rudolph E. Peierls (1907 - 1995)

@ phonons treated as classical particles

@ formulation of a Boltzmann equation
@ microscopic foundation on classical ideas

@ quantized normal modes are treated as being well
localized in both position and momentum space
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Fourier's Law
Diffusion and Relaxation

Microscopic Foundation Il

Ryogo Kubo (1920-1995)

linear response theory

for electrical transport: H = Ho + H'

heat current as response to a “thermal potential”?

o
o
@ ad hoc transfered from electrical to heat transport
o
o

thermal Kubo formula
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Microscopic Foundation Il

Ryogo Kubo (1920-1995)

linear response theory

for electrical transport: H = Ho + H'

heat current as response to a “thermal potential”?

o
o
@ ad hoc transfered from electrical to heat transport
o
o

thermal Kubo formula

Kubo Formula for heat conductivity

00 B
K(w):/o dte"““/o dATr{g0j(0) j(t +iX)}
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Fourier's Law
Diffusion and Relaxation

Microscopic Foundation Il

Ryogo Kubo (1920-1995)

@ linear response theory

@ for electrical transport: H = Ho + H’

@ ad hoc transfered from electrical to heat transport

-
=9

@ heat current as response to a “thermal potential”?

@ thermal Kubo formula )

Kubo Formula for heat conductivity

00 B
K(w):/o dte"““/o dATr{g0j(0) j(t +iX)}

-

Critical Statement (Kubo et al. Statistical Physics Il (Springer, 1991))

“It is generally accepted, however, that such formulas exist and are of the
same form as those for responses to mechanical disturbances.”

\
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Introduction .
Fourier's Law

Diffusion and Relaxation

Microscopic Foundation Ill

An open system approach

Liouville von Neumann equation

a_; = _lh[F/, Al + L(T1)p+ L(T2)p
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Introduction

Microscopic Foundation Ill

An open system approach

Liouville von Neumann equation

% = A8+ L(Tp+ £(T2)b

Full Numerical Solution

0.2

0.1
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Introduction :
Fourier's Law

Diffusion and R

Microscopic Foundation Ill

An open system approach

Liouville von Neumann equation

% = A8+ L(Tp+ £(T2)b

Full Numerical Solution Perturbation Theory

@ perturbation in Liouville space

0.2 @ unperturbed system 71 =T, =T
~ ! . . @ perturbation AT
o1 N @ current oc temperature difference
@ formula for k: Kubo formula in
1 2 3 4 ) Liouville space
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Fourier's Law
Diffusion and Relaxation

Connection between Diffusion and Relaxation

Bath Scenario

stationary local equilibrium state

Marian Ritter von
Albert Einstein

Smolan [0 heat conductivit
(1879-1955) Smoluchowski 4
(1872-1917) A

:

Decay Scenario

The diffusion constant in a

local equilibrium steady state initial state
(bath scenario) is equivalent
to the relaxation constant
from a far from equilibrium
state into the global
equilibrium (decay scenario). )

final global

equilibrium
[0 relaxation constant
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Schrédinger Dynamics and Reduced Description

Relaxation Dynamics Hilbert
Impr

Model System

Spin coupled to finite environments

o 1 System parameters:
%;‘ A coupling strength (=0.0005)
AB A | d€ band width (=0.5)
= p N1, N2 number of levels (=500)
oystom evironment AE local splitting (=10)
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Relaxation Dynamics

Model System

Schrédinger Dynamics and Reduced Description
Hilbert ve Method

2 1 System parameters:
%;‘ A coupling strength (=0.0005)
AB ® ™ | de band width (=0.5)
= p N1, N2 number of levels (=500)
- C,,vi,.o,,mcnf AE local splitting (=10)

System dynamics

Hamiltonian

l:/ = I:/sys S I:/env S >\\7
Schrodinger dynamics

d N

g W) = —if [ (1))
Reduced density operator

p = Tre{|9(D) (WD)}

Michel, Gemmer, Mahler
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1 Schrédinger Dynamics and Reduced Description

Relaxation Dynamics
1 1

Model System

Spin coupled to finite environments

2 1 System parameters:
%;‘ A coupling strength (=0.0005)
AB A | d€ band width (=0.5)
= p N1, N2 number of levels (=500)
system cnvironmcmT AE |OC3| Spllttmg (:10)
Sy CIEIIEs Dynamical Investigation
Hamiltonian - ‘
L ~ ~ Schrodinger.
H = Hsys + Henv + AV — 08 ’%ﬁ 4
Schrodinger dynamics ‘ﬁ 0G| \\.\ o i
04l \ S J
d e a Equilibrium value
—|w(t)y = —iA |[Y(t
S 1W(e) = —ifl [9(t)) 0l |
Reduced density operator 0 : :
0 1000 2000
p=Tre {lw(t) (1)} !
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Schrédinger Dynamics and Reduced Description

Relaxation Dynamics

Reduced Description

nme

Closed System: System and Env

System S

Environment E

Schrodinger pure state dynamics |¥) or
0 = |¥){¥| according to Liouville von
Neumann Equation
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Schrédinger Dynamics and Reduced Description

Relaxation Dynamics

Reduced Description

Closed System: System and Environment

Schrodinger pure state dynamics |¥) or
0 = |¥){¥| according to Liouville von
System S Neumann Equation
d . A~ ~
—p=—ilH.pl = Lp

Environment E t

Reduced dynamics for the system S

dt t

os=Tre{p} O iTrE {0} = diﬁs =Tre{£p} O no closed equation
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1 Schrédinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert
1 1 Improveme

Reduced Description

Closed System: System and Environment

Schrodinger pure state dynamics |¥) or
0 = |¥){¥| according to Liouville von
System S Neumann Equation

d . e
P i[H.p] = Lp

Environment E

Reduced dynamics for the system S

s =Tre{p} O %Trg {0} = %ﬁs =Tre {£p} O no closed equation

Approaches to a closed equation

@ Projection Operator Techniques: Nakajima-Zwanzig (NZ), Time
Convolutionless (TCL)

@ Hilbert Space Average Method (HAM)

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics
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Schrédinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert e Method
Impr

Quantum Master Equation

Projection operator to relevant (irrelevant) part of the system

Super operator: Pp = relevant part Qp = p — Pp = irrelevant part
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Schrédinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert
Impr

Quantum Master Equation

Projection operator to relevant (irrelevant) part of the system

Super operator: Pp = relevant part Qp = p — Pp = irrelevant part

Liouville von Neumann equation £5 = £p
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Schrédinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert Sy
Impr

Quantum Master Equation

Projection operator to relevant (irrelevant) part of the system

Super operator: Pp = relevant part Qp = p — Pp = irrelevant part

- -

Time local exact master equation (TCL)

Application of the projector on the Liouville von Neumann equation

o . . :
—Pp(t)= K(t) Pp(t) O TCL master equation
ot ~——
TCL generator
@ formal exact equation for relevant part of the system

@ expansion of K in the coupling strength

@ very challenging in higher than second order
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Schrédinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert
Impr

Quantum Master Equation

Projection operator to relevant (irrelevant) part of the system

Super operator: Pp = relevant part Qp = p — Pp = irrelevant part

Time local exact master equation (TCL)

Application of the projector on the Liouville von Neumann equation

o . . :
—Pp(t)= K(t) Pp(t) O TCL master equation
ot ~——
TCL generator
@ formal exact equation for relevant part of the system
@ expansion of K in the coupling strength

@ very challenging in higher than second order

|

Quantum Master Equation (TCL2)

Born-, Redfield-, Markov- and rotating wave approximation

d . P .
rriche —i[Hs. Bs] + Dps
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Schrédinger Dynamics and Reduced Description

system environment

A = 0.0005, e = 0.5,
N1 = N2= N =500

see Breuer et al. PRE submitted (2005)

Michel, Gemmer, Mahler Fourier’'s Law fr Quantum Mechanics



Schrédinger Dynamics and Reduced Description
age Method

AE ®
system environment

A = 0.0005, e = 0.5,
N1 = N2= N =500

see Breuer et al. PRE submitted (2005)

Michel, Gemmer, Mahler
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Relaxation Dynamics

v e L =
T ]
system environment 02
A = 0.0005, de = 0.5, 0

N1 = N2= N =500

Solution of the QME in TCL2

pui(t) = pu(0)e ™
with the decay rate y = 2220

de

see Breuer et al. PRE submitted (2005)

Michel, Gemmer, Mahler

Schrédinger Dynamics and Reduced Description
Hilbert Sy
Improve 1t of TCL

Comparison of QME and Schrodinger

TCL2

0 1000 2000
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Schrédinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert
Impr

Comparison of QME and Schrodinger

& N | -
T QU
system environment 02 T C L2 4
A =0.0005, ¢ = 0.5, 0 0 10‘00 20‘00
N1 = N2= N =500 t
i
Solution of the QME in TCL2 Problem
pii(t) = ﬁu(O)e”t o TCL? ;onverges to the wrong
S equilibrium value

with the decay rate v =

be @ all higher orders of the TCL

expansion are divergent
see Breuer et al. PRE submitted (2005)
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Dynamics and Reduced Description
Average Method

i
= 2 [9(e)) = —iV(8) [9(1))

AE ® :
y M 3 short t|meAstep T
= T [9(7)) = D(7) [4(0))
system environment
Dyson operator D(7) = Z( ) Ui(T)
j=1

Freeman Dyson
(*¥1923)

01(7') = /OT dr’ \7(T') , UQ(T) = /OT dr' /OT dr” \7(T') \7('r”)
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Dynamics and Reduced Description
Average Method

i
= 2 [9(e)) = —iV(8) [9(1))

AE ® o
y M 3 short time step T
== T [¥(7)) = D(7) [%(0))
system environment
Dyson operator D(T Z ( — —) UJ

Freeman Dyson
(*¥1923)

Oi(1) = /OT dr' (), UOx(7) = / dr’ / dr" V(v (")

Second Order Approximation for a short time T

() & (1 20:(r) — 2 0a(r)) b(0)) = Dolab(0))

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics




Schrodinger Dynamics and uc
Relaxation Dynamics Hl\bert Space Average Method
ment of TCL

Approximation Scheme |

Short time evolution of probabilities

Environment E
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Relaxation Dynamics

Approximation Scheme |

Short time evolution of probabilities

Pu(T) = ($(T)|Pi|w(T))

= ((0)| D' (1) P D(7)[%(0))

second order approximation of Dyson operator

Environment E Pr(7) = ($(0)|D}(7) P D2 () |9(0))

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



1 Schradinger Dynamics and Reduce
Relaxation Dynamics Hilbert Space Average Method
1 1 Improvement of TCL

Approximation Scheme |

Pi(T) = (DI A $(r)
iR = ((O)IB (1) A D(7) % (0))

second order approximation of Dyson operator

Environment E Pr(7) = ($(0)|D}(7) P D2 () |9(0))

i

Hilbert Space Average

Method to guess the value of a quantity defined as a function of the full state
|) of the system

Hilbert Space @ only available information is the initial

probability P1(0) = (¥(0)|P1[¥(0))

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



1 Schradinger Dynamics and Reduce
Relaxation Dynamics Hilbert Space Average Method
1 1 Improvement of TCL

Approximation Scheme |

Pi(T) = (DI A $(r)
iR = ((O)IB (1) A D(7) % (0))

second order approximation of Dyson operator

Environment E Pr(7) = ($(0)|D}(7) P D2 () |9(0))

i

Hilbert Space Average

Method to guess the value of a quantity defined as a function of the full state
|) of the system

Hilbert Space

all states

@ only available information is the initial
probability Pi(0) = (¥(0)|P:|¥(0))
@ take all states |¢) featuring Pi(0)
O take the average over all (¢|Di P, Dy|¢)

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



Sc g ynz s and Reduce
Relaxation Dynamics Hilb Space Average Method
Improvement of TCL

Approximation Scheme ||

Hilbert Space Average

replace the actual expectation value
Pi(T) & (%(0)| D} P Da|(0))

by the Hilbert space average [{¢|D}P1Ds|$)]

Hilbert Space

all states

Pi(1) = [($| D} P Dal¢)]

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



Schradinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert Space Average Method
Improvement of TCL

Approximation Scheme ||

Hilbert Space Average

replace the actual expectation value
Pi(T) & (%(0)| D} P Da|(0))

by the Hilbert space average [{¢|D}P1Ds|$)]

Hilbert Space

all states

Pi(1) = [($| D} P Dal¢)]

with a lot of algebra as well as iterating the scheme after the time step 7
O one finally gets a rate equation for the probabilities Py, (t)

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



Schradinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert Space Average Method
Improvement of TCL

Approximation Scheme ||

Hilbert Space Average

replace the actual expectation value

Hilbert Space R
all states Pl (T) ~ <’(I)(O)|D; Pl D2W(0))
by the Hilbert space average [[((b\D; P Dg\d))]]

Pi(1) = [($| D} P Dal¢)]

with a lot of algebra as well as iterating the scheme after the time step 7
O one finally gets a rate equation for the probabilities Py, (t)

HAM Rate equation

2mAZN

ipl(t)—w(QPl(t)JrPl(o)) with = 222

further reading: Gemmer, Michel EPL accepted (2005)
Gemmer, Michel, Physica E, 29, 136 (2005)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)
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iption
Relaxation Dynamics Hl\bert Space Average Method
Improvement of TCL

Results of HAM

Criteria for applicability of HAM

From theory one gets criteria for
the validity of HAM
N N

A— >1 2 1
A2l Mpa <

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



Relaxation Dynamics

Results of HAM

Schradinger Dynamics and Reduced Description
Hilbert Space Average Method
Improvement of TCL

Criteria for applicability of HAM

From theory one gets criteria for
the validity of HAM
N N

N—>1, N—<«k1
0e — 662<<

Michel, Gemmer, Mahler

Solution of the HAM rate equation

Solving the rate equation
Pi(t) = P1(0)(0.5 + 0.5e ")

2w’ N

with v = ==

Fourier's Law from Quantum Mechanics



Schradinger Dynamics and Reduced Description
Relaxation Dynamics Hilbert Space Average Method
Improvement of TCL

Results of HAM

Criteria for applicability of HAM Solution of the HAM rate equation

From theory one gets criteria for
the validity of HAM

N

Solving the rate equation

N Pi(t) = P1(0)(0.5 + 0.5e ")

NDN=>1, ¥ <1
- 2
0€ 0€ with 1y = 27,?62,\/
No I L
i HAM
AE ® . ) o6t N e - |
\74 = \ —
T Q N
system environment 02 F N :rCL2 4
A = 0.0005, §€ = 0.5, o . TR —
N1=N2= N =500 :

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



Sc iced Description
Relaxation Dynamics Hilbe c Y
Improvement of T

Breuer TCL

a new TCL projection operator for finite environments

@ convergence of the second order to the correct equilibrium state

@ no divergence in higher orders

Breuer et al. PRE submitted (2005)
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Relaxation Dynamics

Breuer TCL

a new TCL projection operator for finite environments

@ convergence of the second order to the correct equilibrium state

@ no divergence in higher orders

A =0.001

09 new TCL2 i

0.8
0.7 +

Pi(t)

0.6

05

0.4 . . .
0 100 200 300 400

N > N
D= =1>1 — =0.002 < 1
A =121, N =0002 <

Breuer et al. PRE submitted (2005)
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1
Relaxation Dynamics
1 1

Breuer TCL

a new TCL projection operator for finite environments

@ convergence of the second order to the correct equilibrium state

@ no divergence in higher orders

A =0.001

1 1 1 -
new TCL2 i
o9 % new TCL2
o~ 08 = o8
E 0.7 - o' 07
06 | 0.6 |
05 | o5 AN S—
04 ‘ ‘ ‘ ‘ 04 R
0 100 200 300 400 o 1 2 3 4 5 6 7
t
N s N N s N
22— =1>1, XX — =0.002 1 22— =10>1, XN — =02 1
3 - oe? < de - oe? < )

Breuer et al. PRE submitted (2005)
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Energy Diffusion and Heat Conduction

Outline

© Energy Diffusion and Heat Conduction
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HAM for Heat Conduction Models

1am
Energy Diffusion and Heat Conduction

The Hamiltonian Model

Hamiltonian

05% = =0 . N N1
! AE @ ® - ® H:ZH\OC(N)‘F)\ZV(M,M‘FU
[ > u=1 u=1

Hoc local Ham. ' s ° o 0
V  interaction .

Vo1 J% V23
A coupling strength o
de  band width
AE gap ' 0
n  number of levels 0 = K

0

Michel, Gemmer, Mahler Fourier’'s Law fr Quantum Mechanics




HAM for Heat Conduction Models

Energy Diffusion and Heat Conduction

Application of HAM

Observed quantity: probability to find an excitation in subsystem u

@ Energy in a subunit O excitation probability =

@ Projector on the excitation band of uth subunit P,

@ Probability Pu(t) = (w(1)|Pulw(t)) Subunit

further reading: Michel, Mahler, Gemmer, PRL 95, 180602 (2005)
Michel, Gemmer, Mahler, PRE submitted (2005)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)

Michel, Gemmer, Mahler Fourier's Law from Quantum Mechanics



HAM for Heat Conduct\on Models

Energy Diffusion and Heat Conduction

Application of HAM

Observed quantity: probability to find an excitation in subsystem u

@ Energy in a subunit O excitation probability =
@ Projector on the excitation band of uth subunit P,

@ Probability Pu(t) = (w(1)|Pulw(t)) Subunit

Short time evolution according to Dyson series expansion

Pu(T) = (W(0)ID' (1) PuD(7)|%(0))

further reading: Michel, Mahler, Gemmer, PRL 95, 180602 (2005)
Michel, Gemmer, Mahler, PRE submitted (2005)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



HAM for Heat Conduction Models

Energy Diffusion and Heat Conduction

Application of HAM

Observed quantity: probability to find an excitation in subsystem u

@ Energy in a subunit O excitation probability =

@ Projector on the excitation band of uth subunit P,

@ Probability Pu(t) = (w(1)|Pulw(t)) Subunit

Short time evolution according to Dyson series expansion

Pu(T) = (¥(0)| D' (1) B, D(7)|%(0)) )
Second order truncation of Dyson series

~ |~ 1 -~ ~
[w(r)) = (1= 200(r) = 2502(r)) (0)) = Da(m)|w(0))
second order approximation of the probability

Pu(r) = ($(0)|DI(7) PuD2 () |%(0))

further reading: Michel, Mahler, Gemmer, PRL 95, 180602 (2005)
Michel, Gemmer, Mahler, PRE submitted (2005)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



HAM for Heat Conduction Models
at Tr ort
Energy Diffusion and Heat Conduction s

Rate Equation

Hilbert Space Average for P,(T)

HAM of the probability to find the excitation in the uth subsystem:

Pu(T) = (¥(0)| DI (1) PuD2(7)19(0)) = [($1 D5 () PuD2(7)I9)]

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



HAM for Heat Conduct\on Models

Energy Diffusion and Heat Conduction

Rate Equation

Hilbert Space Average for P,(T)

HAM of the probability to find the excitation in the uth subsystem:

Pu(T) = (¥(0)| DI (1) PuD2(7)19(0)) = [($1 D5 () PuD2(7)I9)]

boring calculation of the concrete average ... iteration scheme ... [

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



uction Models
AT

Energy Diffusion and Heat Conduction

Rate Equation

Hilbert Space Average for P,(T)

HAM of the probability to find the excitation in the uth subsystem:
Pu(T) = ((0)| DI (1) B Da(7) |9 (0)) = [(¢| D () PuDa(7)14)]

boring calculation of the concrete average ... iteration scheme ... [

Rate equation for the probability

| %:_K<P1_P2>
5?%®§® @gn %:—K@PM—PW—P“,Q
TiT Wt N % = —K<PN = PN—1>

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



Probability

Energy Diffusion and Heat Conduction

Comparison to the Schrodinger Equation

® ®
e e
1 : :
0.8 A(t) |
06 % 7
04’P2(t) e
0.2 e
0 e Py (1)
0 500 1000 1500
t

Model Parameters

@ levels in the band n = 500

@ band width de = 0.05
@ coupling strength A =5 -

Michel, Gemmer,

107°

Mahler

HAM for Heat Conduction Models

Conditions:
2n=05 >
Xn=05-107° <«

Fourier's Law from Quantum Mechanics




HAM for Heat Conduction Models
Energy and Transpo
M

1
Energy Diffusion and Heat Conduction

Comparison to the Schrodinger Equation

1 : ; 1
2 08 A 1 208
306 & ] 3 o6
2 b5
0
° % Ipy(1) S o 04
o 52 Mw*‘*“"ww o e
o ™ Py ( t) -
0 500 1000 1500 0 1000 2000 3000 4000 5000
Model Parameters
@ levels in the band n = 500 Ccindltlons: .
@ band width e = 0.05 N .
2 n=05-107 <1 O

@ coupling strength A =5-107°

Fourier's Law from Quantum Mechanics

Michel, Gemmer, Mahler



HAM for Heat Conduct\on Models

Energy Diffusion and Heat Conduction
Deviation of HAM from the Exact Solut|on

Deviation Measure

time-averaged quadratic deviation of the exact result from the HAM
prediction

D2 — _/ HAI\A exact(t)) dt S 1

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



HAM for Heat Conduct\on Models

Energy Diffusion and Heat Conduction
Deviation of HAM from the Exact Solut|on

Deviation Measure

time-averaged quadratic deviation of the exact result from the HAM
prediction

D2 — _/ HAM exact(t)) dt S 1

for different initial states

1 1200 ‘ ‘ ‘
8
(o]
Jd
o 800 g
S
o
O 4000 i
IS
3
=
0 ‘ |
0 0.2 0.4 0.6 0.8
D310’
15000 equally distributed initial states
(N =2, n=500)
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HAM for Heat Conduction Models
1am Energy and Transpo
Energy Diffusion and Heat Conduction 1 th M

Deviation of HAM from the Exact Solution

Deviation Measure

time-averaged quadratic deviation of the exact result from the HAM
prediction

1 5T
D2 = ?/ (PPAM (1) — Pt (1)) %dt < 1
0

for different initial states for different em sizes

() 1200 ‘ ‘ ‘
= ]
(o}

17

“— 800 B

o 1
o

Q 400] J

e 4
=

=

0 | |
0 0.2 0.4 0.6 08
Di[1077] n

15000 equally distributed initial states dependence of D7 on n for N = 3.
(N =2, n=500) Inset: dependence on N for n = 500.

-
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Energy Diffusion and Heat Conduction

Energy Diffusive Behavior

HAM rate equation

H/ for Heat Conduction Models
Energy and Heat Transport
d the D Model

== =

AE ®

Respective rate equation

dP

F = *K(Pl — PQ)

Michel, Gemmer, Mahler
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HAM fc eat Co
Energy and Heat
Energy Diffusion and Heat Conduction | the Design Model

Energy Diffusive Behavior

HAM rate equation
% % Respective rate equation

AE ® % = *K(Pl — PQ)
v

Energy Current

defined as the change of internal iy = E(ﬁ B @)
energy Uy, in the two subunits 2 \dt dt
1/dU;  dU, and with rate equation
hr =5 (5~ )

g = —KAE(Pl . Pg)
internal energy in this simple

model: U, = AEF, [0 energy current o< energy
gradient (energy Fourier's law)

A\

Michel, Gemmer, Mahler Fourier’'s Law from Quantum Mechanics



HAM for Heat Conduction M

Energy and Heat Transport
ion B | the gn Model

1
Energy Diffusion and Heat Conducti

Heat Diffusive Behavior

Quasi Thermal State

Ey, E
| cexp{—rgr} || x exp{—rTr}
|
‘\ \
AE ® \
\ ® ||
_Y _ R — ‘\\\ \\
p(E) p(E)
0 not a mixed state, but a superposition of states according
to the Boltzmann distribution

Heat Current and Conductivity

Kth  heat conductivity
Jih = — K AT with Ky, = KC K energy diffusion constant
c

heat capacity of subunit

Michel, Gemmer, Mahler
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H/ for Heat ( ction
Energy and Heat Transport
d the D n Model

Energy Diffusion and Heat Conduction

Heat Conductivity

ansport Coefficien Expectation

16
@ low temperatures oc T2
e @ high temperatures oc T~ -T2
o 07 (Peierls)
= D
<
o
o @ low temperatures ox e~ /7
0 . _
@ high temperatures o< T2
o

Michel, Mahler, Gemmer, PRL 95, 180602 (2005)
Michel, Gemmer, Mahler, PRE submitted (2005)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)

further reading:

Quantum Mechanics

Michel, Gemmer, Mahler Fourier’s Law fr




@ easy definition of local

]
‘;‘ % % % " energy and temperature
AE ® ® - ®

@ such a large gap is not
p=1 I e = very typical situation

0 HAM is not restricted to such gapped system

Michel, Gemmer, Mahler Fourier's Law from Quantum Mechanics



1am
Energy Diffusion and Heat Conduction

Design Model and Real Solids

Design Model

@ easy definition of local

]
5{ % % % " energy and temperature
AE ® ® - ®

@ such a large gap is not

4#:1 RO TN very typical situation
0 HAM is not restricted to such gapped system
ot

Gap free system

Local energy

right 0 : : :
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1am
Energy Diffusion and Heat Conduction

Spin Model

Spin ring without local field

E An =" &Fua&(u+1)
= ”
(o] ~
1 I3 . Ar =Y pyoi(u);(u+ 1)
H = H, wooij
Heisenberg Ring Heisenberg and Random Ring
6 6
4 4
w w
2k 5 2
> >
(@) (@)
o ° o °
c c
Ll -2 -2
-4 -4
2.5 5 7.5 10 12.5 15 17.5 20 2.5 5 7.5 10 12.5 15 17.5 20
t t
H = XAy H = My + 0. 11 A
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Energy Diffusion and Heat Conduction Beyond the Design Model

Summary and Outlook

The new Hilbert Space Average Method is a powerful technique to describe
both

@ the statistical decay into the global equilibrium state within quantum
mechanics

@ the emergence of Fourier's Law from Schrodinger dynamics

Outlook

| A\

@ more realistic models

@ comparison with bath scenario

Thanks

| A\
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