

# Aspects of Non-Equilibrium Quantum Thermodynamics

## **Mathias Michel**

#### Eulenhof-Seminar, 11.10.2005

- 1. Introduction
- 2. Relaxation Processes
- 3. Heat Conduction
- 4. Conclusion



# **1** Introduction

## **Schrödinger Dynamics:**



Closed system (system+environment) Schrödinger dynamics:

pure state  $|\psi
angle$  or  $\hat{
ho}=|\psi
angle\langle\psi|$ 

Liouville von Neumann Equation:

$$\frac{\mathsf{d}}{\mathsf{d}t}\hat{\rho} = -\mathsf{i}[\hat{H},\hat{\rho}] = \hat{\mathcal{L}}\hat{\rho}$$

Reduced dynamics for the system S:

$$\hat{\rho}_{\mathsf{S}} = \mathsf{Tr}_{\mathsf{E}} \left\{ \hat{\rho} \right\} \qquad \qquad \frac{\mathsf{d}}{\mathsf{d}t} \mathsf{Tr}_{\mathsf{E}} \left\{ \hat{\rho} \right\} = \frac{\mathsf{d}}{\mathsf{d}t} \hat{\rho}_{\mathsf{S}} = \mathsf{Tr}_{\mathsf{E}} \left\{ \hat{\mathcal{L}} \hat{\rho} \right\}$$

not a closed equation for  ${\sf S}$ 



### Nakajima-Zwanzig Projection Operator Technique

Projection operator to relevant (irrelevant) part of the system:

$$\hat{\mathcal{P}}\hat{\rho} = \mathsf{Tr}_{\mathsf{E}}\left\{\hat{\rho}\right\} \otimes \hat{\rho}_{\mathsf{E}} = \hat{\rho}_{\mathsf{S}} \otimes \hat{\rho}_{\mathsf{E}} \qquad \hat{\mathcal{Q}}\hat{\rho} = \hat{\rho} - \hat{\mathcal{P}}\hat{\rho}$$

Nakajima-Zwanzig equation (factorizing initial conditions  $\hat{\rho}(0) = \hat{\rho}_{S}(0) \otimes \hat{\rho}_{E}$ ):

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\mathcal{P}}\hat{\rho}(t) = \int_{0}^{t}\mathrm{d}s\hat{\mathcal{K}}(t,s)\hat{\mathcal{P}}\hat{\rho}(s)$$

- exact equation for relevant part of the system
- non-local in time (future time evolution depends on the history)
- integro-differential equation

Born-, Redfield-, Markov- and rotating wave approximation

$$\frac{\mathsf{d}}{\mathsf{d}t}\hat{\rho}_{\mathsf{S}} = -\mathsf{i}[\hat{H}_{\mathsf{S}},\hat{\rho}_{\mathsf{S}}] + \hat{\mathcal{D}}\hat{\rho}_{\mathsf{S}}$$



## Time Convolutionless (TCL) Technique

- TCL uses the same projection operator as Nakajima-Zwanzig.
- slightly different derivation
- exact, time-local, inhomogenious linear differential equation
- here factorizing initial conditions

$$\frac{\mathsf{d}}{\mathsf{d}t}\hat{\mathcal{P}}\hat{\rho}(t) = \hat{\mathcal{K}}(t)\hat{\mathcal{P}}\hat{\rho}(t) + \hat{\mathcal{I}}(t)\hat{\rho}(0)$$

To find a solution of this equation it is common to expand the TCL generator  $\hat{\mathcal{K}}$ .



## Hilbert Space Average Method

Dyson expansion of the complete time evolution (time dependent perturbation theory)

$$|\psi(t+\Delta t)\rangle = \hat{D}|\psi(t)\rangle, \qquad \hat{\rho}_{\mathsf{S}}(t+\Delta t) = \mathsf{Tr}_{\mathsf{E}}\left\{\hat{D}|\psi(t)\rangle\langle\psi(t)|\hat{D}^{\dagger}\right\}$$

Hilbert Space Average ( $\hat{D}$  in 2. order)

$$\hat{\rho}_{\mathsf{S}}(t + \Delta t) \approx \left[ \mathsf{Tr}_{\mathsf{E}} \left\{ \hat{D} | \psi(t) \rangle \langle \psi(t) | \hat{D}^{\dagger} \right\} \right]$$

Result:

- rate equation for  $\hat{\rho}_{S}$
- criteria for applicability
- not necessarily factorizing initial states



# 2 Relaxation Processes



The TCL master equation:

- expansion does not converge in arbitrary high order
- new projector for TCL from HAM (Breuer)



# New TCL in 2. order



![](_page_7_Picture_0.jpeg)

# **3** Application of HAM to Heat Conduction Models

## **Design Model: Energy Diffusion**

![](_page_7_Figure_5.jpeg)

![](_page_8_Picture_0.jpeg)

## **Design Model: Heat Diffusion**

- quasi thermal initial state: eigenstates superposed according to Boltzmann probability
- heat conductivity  $\kappa = \gamma c$  (energy diffusion constant  $\gamma$ , heat capacity c of single subunit)

![](_page_8_Figure_6.jpeg)

![](_page_9_Picture_0.jpeg)

### **Deviations of the HAM Prediction from the Exact Dynamics**

![](_page_9_Figure_4.jpeg)

![](_page_10_Picture_0.jpeg)

### The Route to More Realistic Models

- system must exhibit a topological structure in real space
- $\bullet$  coarse-graining of the system  $\rightarrow$  weakly coupled subunits
- HAM criteria?

![](_page_10_Figure_7.jpeg)

initial state: quasi thermal  $T_1 = 40$ ,  $T_2 = 1$ 

![](_page_11_Picture_0.jpeg)

## Subspace Conduction in Spin Systems (Pedro Vidal)

![](_page_11_Figure_4.jpeg)

#### Heisenberg-Ring

- one excitation subspace
- NN coupling type
- no statistical behavior
- higher subspaces?
- ONN coupling?

![](_page_12_Picture_0.jpeg)

## **Spin-Ring: Coarse-Graining**

- without local field
- Heisenberg NN interaction
- Random NN interaction, no disorder

![](_page_12_Figure_7.jpeg)

![](_page_12_Figure_8.jpeg)

![](_page_13_Picture_0.jpeg)

# Spin-Ring

![](_page_13_Figure_4.jpeg)

![](_page_14_Picture_0.jpeg)

# 4 Conclusion

#### • Relaxation via finite baths

- Born approximated Nakajima-Zwanzig equation fails
- application of HAM
- new TCL

#### • Heat conduction

- normal heat respectively energy diffusion in design models
- evidences for normal diffusion in realistic models (single band model, spin systems)
- foundation of Kubo-formula from HAM