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Introduction .
Fourier's Law

Diffusion and Relaxation

Heat Transport

Heat Conduction Experiment
(Deutsches Museum Miinchen)

@ no global temperature
@ local temperature
@ temperature gradient

@ constant heat current
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Introduction .
Fourier's Law

Diffusion and Relaxation

Heat Transport

El | | |

Jean Baptiste Joseph Fourier
Heat Conduction Experiment (1768 - 1830)

(Deutsches Museum Miinchen) Fourier's Law
@ no global temperature linear connection between
temperature gradient VT and
heat current J

@ local temperature

@ temperature gradient

@ constant heat current J=-KkVT

[0 heat conductivity k
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Introduction .
Fourier's Law

Diffusion and Relaxation

Heat Conductivity

Discrete Version Fourier's Law
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Introduction .
Fourier's Law

Diffusion and Relaxation

Heat Conductivity

Discrete Version Fourier's Law - —
md Conditions for Local Equilibrium
| Jhot = Ju—1p = Juut1 = Jead = J
for Kk to be a material constant

ATy 1 =A0Tups1 = AT

except some differences at the contacts

&

Jppt1 = —6(Tpr1 — Ty)
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Introduction .
Fourier's Law

Diffusion and Relaxation

Heat Conductivity

Discrete Version Fourier's Law - —
sl Conditions for Local Equilibrium
R Jhot = Ju—1p = Juut1 = Jead = J
for Kk to be a material constant

ATy 1 =A0Tups1 = AT

except some differences at the contacts

&

Definition of the Heat Conductivity
J

K

T AT
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Introduction .
Fourier's Law

Diffusion and Relaxation

Heat Conductivity

Discrete Version Fourier's Law
[ — i .

Conditions for Local Equilibrium

Jhot = Ju—1p = Juut1 = Jead = J

for k to be a material constant
BT g = AT pmpen = AT

except some differences at the contacts

Normal and Ballistic Transport

AT #0 = finite kK

[0 normal transport

Definition of the Heat Conductivity AT=0 = kKk—roo
J

[0 ballistic transport

K

T AT
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Introduction .
Fourier's Law

Difl n and Relaxation

Microscopic Foundation

[0 Derivation of a microscopic theory for the heat conductivity k
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Introduction

Fourier's Law
Diffusion and Relaxation

Microscopic Foundation

[0 Derivation of a microscopic theory for the heat conductivity k

Peter J. W. Debye (1884-1966)

particle current:

@ mean velocity v
@ mean free path 7

Ko CcVI

(c heat capacity)
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Introduction

Fourier's Law
Diffusion and Relaxation

Microscopic Foundation

[0 Derivation of a microscopic theory for the heat conductivity k

Sir Rudolph E. Peierls (1907 - 1995)
Peter J. W. Debye (1884-1966)

quasi-particle current:
particle current:

@ Boltzmann equation

@ mean velocity v ® Umkiapp process

@ mean free path 7

— 8

Koxcvl Ko T
. 1 1
(c heat capacity) — to —
Ko = to =
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Introduction

Microscopic Foundation

[0 Derivation of a microscopic theory for the heat conductivity k

Sir Rudolph E. Peierls (1907 - 1995)
Peter J. W. Debye (1884-1966) quasi-particle current:

particle current: B @ Boltzmann equation

~ T
mean velocity v @ Umklapp process

@ mean free path 7

- 3

Koxcvl Ko T
' 1 1

¢ heat capacit il
( pacity) ) K= to —

Ryogo Kubo (1920-1995)
A &

@ linear response theory (for electrical transport)

@ Kubo formula O current current autocorrelation

@ ad hoc transferred from electrical to heat transport
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Introduction

Fourier's Law
Diffusion and Relaxation

Connection between Diffusion and Relaxation

Bath Scenario

; stationary local equilibrium state
Albert Einstein MarlangO\Itatsr von y q

(1879-1955) Smoluchowski O heat conductivity
(1872-1917) i

Diffusion \i

The diffusion constant in a Decay Scenario
local equilibrium steady state
(bath scenario) is equivalent
to the relaxation constant
from a far from equilibrium _ final global
state into the global _ equilibrium
equilibrium (decay scenario). O relaxation constant
v

initial state
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Bath Scenario

Outline

© Bath Scenario

Michel, Gemmer, Mahler Heat Transport in Small Q



A Quantum Heat Conduction Model
Conduction Model
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Local Hamiltonian, Zeeman splitting

N
Fl\oc = Z 6'2(“/)

p=1

Interaction

Heisenberg interaction:

N

=il
Au=> 6&(u)-6(u+1)
1

T
I

Forster interaction:
N—1
Ae = [6x(w)ox(n+1)+6,(1)6y (1+1)]
p=1

Random interaction:

=2

-1 3
Hr = > pi6i(w)6;(u+ 1)
p=1ij=1
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ction Model
of the Heat Conduction Model

Local Hamiltonian, Zeeman splitting
N
Aoc=> 6
loc ZUZ(M) Model System

Interaction

1\:
-
A\

Heisenberg interaction:

=il
Au=> 6&(u)-6(u+1)
1

=2

T
I

Forster interaction:
Environment

Ae = [6x(w)ox(n+1)+6,(1)6y (1+1)] approximation of large
u=1 environmental systems by a
Quantum Master Equation

Random interaction:
(Open system approach)

N-1 3
Z Z Um(u)@(ﬂ + 1)
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Bath Scenario

Modelling of Environments

Liouville space

@ from pure states to mixed
states
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Bath Scenario

Modelling of Environments

Liouville-von-Neumann Equation I
Liouville space

@ from pure states to mixed
states
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m Heat Conduction Model
Bath Scenario 2 e H onduction Model
A Perturt

Modelling of Environments

Liouville-von-Neumann Equation I
Liouville space

@ from pure states to mixed
states

@ adding phenomenological
damping terms: dissipator

= —i[A. 0+ Lp

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Bath Scenario

Modelling of Environments

Liouville-von-Neumann Equation I
Liouville space

@ from pure states to mixed
states

@ adding phenomenological

i 7I[H P+ Lo damping terms: dissipator
Dissipator for a single spin (Lindblad Form)
1)
T e 3| |
Sy = o)

-
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Bath Scenario

Modelling of Environments

Liouville-von-Neumann Equation I
Liouville space

@ from pure states to mixed
states

@ adding phenomenological

i 7I[H P+ Lo damping terms: dissipator
Dissipator for a single spin (Lindblad Form)
1)
T 1® 7| |1 Wo—1 < Wi
Sy = o)

-
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Bath Scenario

Modelling of Environments

Liouville-von-Neumann Equation I
Liouville space

@ from pure states to mixed
states

@ adding phenomenological
damping terms: dissipator

dp A .
L= A+
it i[H.p]+ Lo

Wo—1 < Wiso
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Bath Scenario

Modelling of Environments

Liouville-von-Neumann Equation I
Liouville space

@ from pure states to mixed

states
LvN Equation (Open System) i i
= @ adding phenomenological
dp A N ; o
a9 = —i[H, 0] + Lp damping terms: dissipator

Dissipator for a single spin (Lindblad Form)

1Probab\l\ty

Wo—1 < Wiso
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A Quantum Heat Conduction Model
Bath Scenario Properties of the Heat Conduction Model
A Perturbation Theory

Properties of the Stationary State

LvN Equation: Stationary State

=L = _i[A, 8l + L1(T)p+ Lo(T2)p = LD

stationary state: % = £p, =0

Gemmer, Michel, Mahler, LNP657 (2004) [0 po contains: temperature profile, heat currents

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



A Quantum Heat juction Model
Bath Scenario Properties of the Heat nduction Model
A Perturbation Thec

Properties of the Stationary State

LvN Equation: Stationary State

- = —i[A, ]+ L1(T1)p+ L2(T2)p = L

stationary state: % = £p, =0

Gemmer, Michel, Mahler, LNP657 (2004) [0 po contains: temperature profile, heat currents

Expectation Value

A= Tr{Apo}

Michel, Gemmer, Mahler
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A Quantum Heat Conduction Model
Bath Scenario Properties of the Heat duction Model
A Perturbation Theory

Properties of the Stationary State

LvN Equation: Stationary State

- = —i[A, ]+ L1(T1)p+ L2(T2)p = L

stationary state: % = £p, =0

Gemmer, Michel, Mahler, LNP657 (2004) [0 po contains: temperature profile, heat currents

Expectation Value

A= Tr{Apo}

Local Temperature

local energy used as a measure for the
local temperature:

T (1) = Tr{Hoc(1)po}
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A Quantum Heat Conduction Model
Bath Scenario Properties of the Heat Conduction Model
A Perturbation Theory

Properties of the Stationary State

LvN Equation: Stationary State

=L = _i[A, 8l + L1(T)p+ Lo(T2)p = LD

stationary state: % = £p, =0

Gemmer, Michel, Mahler, LNP657 (2004) [0 po contains: temperature profile, heat currents

Expectation Value

A= Tr{Apo}

Local Temperature

according to the current operator J:
local energy used as a measure for the ~

. J = Tr{Jpo}
local temperature:

T (1) = Tr{Hoc(1)po}
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antum Heat Conduction Model
Bath Scenario Properties of the Heat duction Model
A Perturbation Thec

Local Temperature Profile

Heisenberg Interaction

Michel et al. EPJB 34, 325 (2003)
system number u
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antum Heat Cond on Model
Bath Scenario Properties of the Heat duction Model
A Perturbation The

Local Temperature Profile

Heisenberg Interaction

0.2
i) +
S +
o1 :
Michel et al. EPJB 34, 325 (2003)
system number u )
Random Interaction
0.2
) Y g
= s
~o1
system number u
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antum Heat Cond on Model
Bath Scenario Properties of the Heat duction Model
A Perturbation The

Local Temperature Profile

Heisenberg Interaction

02

T[AE]

normal
transport

Michel et al. EPJB 34, 325 (2003)
system number u

Random Interaction

TIAE]

normal
transport

system number u
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antum Heat Conduction Model
Bath Scenario Properties of the Heat Conduction Model
A Perturbation The

Local Temperature Profile

Heisenberg Interaction

02

T[AE]

normal
transport

Michel et al. EPJB 34, 325 (2003)

system number u

Random Interaction

0.2 0.2
(m T + i s -
=l . —_ o < T 0o
~o1 ey o1 5 a
£ n n
= E =c
o = © ©
c 0 s

system number pu system number p
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uantum Heat Conduction Model
Bath Scenario Properties of the Heat Conduction Model
A Perturbation The

Fourier's Law: Normal Behavior

Discrete Fourier's Law

linear connection between current
and local temperature difference

J(p, u+1) =k AT (4, u + 1)
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A Quantum Heat Conduction Model
Bath Scenario Properties of the Heat Conduction Model
A Perturbation Theory

Fourier's Law: Normal Behavior

Procedure

Discrete Fourier's Law

@ mean temperature
T=(T1+T2)/2

linear connection between current
and local temperature difference

@ temperature difference
J(p, u+1) =k AT (4, u + 1) P

AT = (Th — T)

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



uantum Heat Conduction del
Bath Scenario Properties of the Heat Conduction Model
A Perturbation The

Fourier's Law: Normal Behavior

Procedure

Discrete Fourier's Law

@ mean temperature
T=(T1+T2)/2

@ temperature difference
AT = (T1 — T»)

linear connection between current
and local temperature difference

J(p, u+1) =k AT (4, u + 1)

Numerical Data

w |

—~
“) g
N
—
S
1 T=0.00015 ==
T=0.2015 >
T=0.4515 %=
0.0001 0.0002 0.0003
AT(2,3)
Jin 10 7AE (AE local energy splitting)
T in AE
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A Quantum Heat Conduction del
Bath Scenario Properties of the Heat Conduction Model
A Perturbation Theory

Fourier's Law: Normal Behavior

; — Procedure
ST —— Procequre |

@ mean temperature
T=(T1+T2)/2

@ temperature difference
D AT = (Th — T»)

- '

Numerical Data Conductivity

linear connection between current
and local temperature difference

J(p, u+1) =k AT (4, u + 1)

w |

0.003
—
)
o < 0.002
g
=
1 T=0.00015 == CCUS
T-=0.2015 >
T=0.4515 =
0.0001 00002 0.0003 01 02 03 04
AT(2,3) T
. . w

Jin 10 7AE (AE local energy splitting)
T in AE
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Bath Scenario
A Perturbation Theory

Perturbation Theory

" Michel et al. EPJB 42, 555 (2004)
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Bath Scenario

Perturbation Theory

dp

== —i[A. Bl + L1(T)p+ L2(T)p

Michel, Gemmer, Mahler

Michel et al. EPJB 42, 555 (2004)
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ntum Heat C

Bath Scenario
A Perturbat\on Theory

Perturbation Theory

Unperturbed System: T

ey

d_/: = —i[A. 8] + Lo(T) + La(T)D

@ stationary state gp is a global
equilibrium state with
temperature T

" Michel et al. EPJB 42, 555 (2004)

Heat Transport in Small Quantum Systems
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ntum Heat C
Bath Scenario
A Perturbat\on Theory

Perturbation Theory

Unperturbed System: T

ey

p

== —i[A. Bl + L1(T)p+ L2(T)p

@ stationary state gp is a global
equilibrium state with
temperature T

@ as in standard perturbation theory
we need the complete solution of
the unperturbed problem

" Michel et al. EPJB 42, 555 (2004)

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



1 3 ntum Heat C
Bath Scenario s of the Heat (
1 A Perturbation Theory

Perturbation Theory

Unperturbed System: T3 Perturbation

=%
=}

= —i[A. Pl + L1(T)p+ Lo(T)p

o
~

@ stationary state gp is a global
equilibrium state with
temperature T

@ as in standard perturbation theory
we need the complete solution of
the unperturbed problem

" Michel et al. EPJB 42, 555 (2004)

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Bath Scenario
1

Perturbation Theory

Unperturbed System: T =

d - A A
= —i[H. 8] + L1(T)p + L2(T)h d—’; = —i[H. 8] + L1(T1)p + L2(T2)p

=%
=}

o
~+

with Ty =T + AT

@ stationary state gp is a global T,=T—AT
equilibrium state with
temperature T

@ as in standard perturbation theory

we need the complete solution of
. w
the unperturbed problem

" Michel et al. EPJB 42, 555 (2004)

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



1 3 ntum Heat
Bath Scenario s of the
1 A Perturbation Theory

Perturbation Theory

Unperturbed System: T3 Perturbation

~ dp .
d P R R = 5 5 5
d_/; :7I[H, p]+£1(7—)p+£2(7—)p at |[H,p]+E1(T1)p+E2(T2)p

with Ty =T + AT
@ stationary state gp is a global To=T — AT
equilibrium state with
temperature T stationary local equilibrium state
@ as in standard perturbation ltheory Bstat = fo + AP
we need the complete solution of

the unperturbed problem
" Michel et al. EPJB 42, 555 (2004)

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



1itum Heat (
Bath Scenario he Hea n Model
A Perturbation Theory

Results of the Perturbation Theory

Stationary State

Pstat = Po + AP Local Equilibrium State

@ (Op contains neither a temperature
profile nor any currents

Michel, Gemmer, Mahler Heat Transport in Small Qu Systems



Bath Scenario 2 es 0 e Hea n Model
A Perturbat\on Theory

Results of the Perturbation Theory

Stationary State
Pstat = Po + AP Local Equilibrium State

@ (Op contains neither a temperature
profile nor any currents

@ all interesting quantities from Ap

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Bath Scenario 2 es 0 e Hea n Model
A Perturbat\on Theory

Results of the Perturbation Theory

Stationary State
Pstat = Po + AP Local Equilibrium State

@ (Op contains neither a temperature

Current and Profile :
profile nor any currents

I p+ 1) = Tr{d(u, p+ 1)45} _ _ - R
AT (u p+ 1) = Tr{ (Hioc (1) — Hloc (ke + 1)) A5} @ all interesting quantities from Ap

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



/ 1itum Heat
Bath Scenario 2 s of the H

A Perturbation Theory

Results of the Perturbation Theory

Stationary State

Pstat = Po + AP Local Equilibrium State

" @ (Op contains neither a temperature
Current and Profile Po .
. profile nor any currents
I, o+ 1) = Tr{J(u, u+ 1)A0} ) ) o ~
AT (s + 1) = Tr{ (Aloc (1) — Fioc (i + 1)) A5} @ all interesting guantities from Ap

J(p 4+ 1) o AT

the current through the system is linear
in the external perturbation

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



/ 1itum Heat
Bath Scenario 2 s of the H

A Perturbation Theory

Results of the Perturbation Theory

Stationary State

Pstat = Po + AP Local Equilibrium State

" @ (Op contains neither a temperature
Current and Profile Po P
. profile nor any currents
I, o+ 1) = Tr{J(u, u+ 1)A0}
AT (u p+ 1) = Tr{ (Hioc (1) — Hloc (ke + 1)) A5}

J(p 4+ 1) o AT

@ all interesting quantities from Ap

the current through the system is linear
in the external perturbation

Temperature Profile

AT(u, 4+ 1) x AT

the profile is also linear in the external
perturbation

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Bath Scenario

A Perturbat\on Theory

Results of the Perturbation Theory

Stationary State
ﬁstat = ﬁO ar Aﬁ

Current and Profile
J(u w4 1) = Te{J(w, p+ 1)A5}
AT(u B+ 1) = Tr{(Fioc (i) — Aloc (i + 1)) Ap}

J(p 4+ 1) o AT

the current through the system is linear
in the external perturbation

Temperature Profile
AT(u, 4+ 1) x AT

the profile is also linear in the external
perturbation

Michel, Gemmer, Mahler

Local Equilibrium State

@ (Op contains neither a temperature
profile nor any currents

@ all interesting quantities from Ap
>

Global Fourier's Law

_ Jwp+1)
AT

[0 independent of AT

Heat Transport in Small Quantum Systems



Bath Scenario

ntum Heat
s of the
A Perturbation Theory

Results of the Perturbation Theory

Stationary State
,astat = ,50 ar Aﬁ

Profile

Current a
J(u w4 1) = Te{J(w, p+ 1)A5}
AT (1 +1) = Tr{ (Fioc (1) — Hioc (1 + 1)) A5}

-

Current

J(p 4+ 1) o AT

the current through the system is linear
in the external perturbation

ot
Temperature Profile
AT(u, 4+ 1) x AT

the profile is also linear in the external
perturbation

-

Michel, Gemmer, Mahler

Local Equilibrium State

@ (Op contains neither a temperature
profile nor any currents

@ all interesting quantities from Ap
.

Global Fourier's Law

oo Jpt1)
AT

[0 independent of AT

o

Local Fourier’'s Law
. J(p. p+1)
AT (w, pu+1)

[0 independent of AT

Heat Transport in Small Quantum Systems



4 T
Perturbation Theory
lete soluti ]
¢ 37 C:TpNe © selution ) O complete solution shows
of LvN eq
a weak AT dependence
D ‘
0 02 0.4
AT
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Bath Scenario

A Perturbation Theory

Discussion of the Perturbation Theory

Conductivity

4 ;
Perturbation Theory
lete soluti ]
¢ 37 C‘:TpNe © selution O complete solution shows
of LvN eq
a weak AT dependence
D ‘
0 02 0.4
AT y

Why this talk doesn’'t end here?

@ shortcoming 1: it isn't possible to observe large systems at the moment

@ shortcoming 2: the systems heat conductivity depends on the
environmental coupling strength in a nontrivial way

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Relaxation Scenario

Outline

© Relaxation Scenario
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Heat Conduction Model

Relaxation Scenario

The Hamiltonian Model

N—-1

N
. A= Foc(u) + 2> V(u p+1)
de n pu=1 pu=1
T% = =
AE ® ® - ®

I—AI[,C local Hamiltonian

4 . — S ) :
h=1 h=2 p=N Vv random interaction

A coupling strength

further reading: Michel, Mahler, Gemmer, PRL 95, 180602 (2005)
Michel, Gemmer, Mahler, PRE 73, 016101 (2006)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)

Michel, Gemmer, Mahler Heat Transport in Small Q



Heat Conduction Model

Relaxation Scenario

The Hamiltonian Model

Hamiltonian: Design Model

N—-1

N
. A= Foc(u) + 2> V(u p+1)
Je n u=1 u=1
T% = =
AE ® ® - ®

I—AI[,C local Hamiltonian

4 ~ — S . :
p=1 p=2 w=N Vv random interaction

A coupling strength

Observed quantity: probability to find uth subsystem excited

@ Energy in a subunit 0 AE-excitation probability Py =

Subunit @

further reading: Michel, Mahler, Gemmer, PRL 95, 180602 (2005)
Michel, Gemmer, Mahler, PRE 73, 016101 (2006)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Heat Conduction Model

Relaxation Scenario

The Hamiltonian Model

N—-1

A= Foc(u) + 2> V(u p+1)

i AE ©® ® -+ ®

I—AI‘[,C local Hamiltonian

p=1 p=2 u=N Vv random interaction
A

coupling strength

Observed quantity: probability to find uth subsystem excited

@ Energy in a subunit 0 AE-excitation probability £,
@ Projector on the excitation band of uth subunit ﬁ’u

further reading: Michel, Mahler, Gemmer, PRL 95, 180602 (2005)
Michel, Gemmer, Mahler, PRE 73, 016101 (2006)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)

=

Subunit @

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems




Relaxation Scenario

The Hamiltonian Model

N—-1

N
. A= Foc(u) + 2> V(u p+1)
Je n u=1 u=1
T% = =
AE ® ® - ®

I—AI[,C local Hamiltonian

4 ~ — S . :
h=1 n=2 p=N Vv random interaction

A coupling strength

Observed quantity: probability to find uth subsystem excited

@ Energy in a subunit 0 AE-excitation probability Py =
@ Projector on the excitation band of uth subunit ﬁ’u

@ Probability Pu(t) = (w(1)|Pulw(t)) Subunit

further reading: Michel, Mahler, Gemmer, PRL 95, 180602 (2005)
Michel, Gemmer, Mahler, PRE 73, 016101 (2006)
Gemmer, Michel, Mahler, Quantum Thermodynamics, Springer (2004)
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Heat Conduction Model

Relaxation Scenario

Reduced and Full Dynamics

Model System
i
de n
B= = =
A ® ® - ®

p=1 pn=2 p=N

Full Dynamics

solution of the Schrodinger equation

d A
g P() = inHY(t))

exact time-dependend probability to
find the pth system excited

Pu(t) = (w(t)|Pulw(t))

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Heat Conduction Model

Relaxation Scenario

Reduced and Full Dynamics

One Excitation Subspace

Model System @ initial state: subsystem 1 excited

B Ee =
i AE ® Q@ - ®

p=1 pn=2 p=N

Full Dynamics

solution of the Schrodinger equation

d A
g P() = inHY(t))

exact time-dependend probability to
find the pth system excited

Pu(t) = (w(t)|Pulw(t))

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Heat Conduction Model

Relaxation Scenario

Reduced and Full Dynamics

One Excitation Subspace

Model System @ initial state: subsystem 1 excited

@ n - N differential equations

B Ee =
i AE ® Q@ - ®

p=1 pn=2 p=N

Full Dynamics

solution of the Schrodinger equation

d A
g P() = inHY(t))

exact time-dependend probability to
find the pth system excited

Pu(t) = (w(t)|Pulw(t))

Michel, Gemmer, Mahler Heat Transport in Small Quantum Systems



Relaxation Scenario

Reduced and Full Dynamics

One Excitation Subspace
Model System @ initial state: subsystem 1 excited

i @ n - N differential equations
AE  ® ® 1 ® Reduced Dynamics of Probabilities

i . . : : :
approximated dynamics: Rate Equation

p=1 p=2 p=N

(derived after TCL/HAM)

Full Dynamics d
P —m(P1 )

2
Il

solution of the Schrodinger equation dt
d
<o) = Al () 3 (2P~ P = i)
exact time-dependend probability to EPN - _K(PN B PN*I)
find the uth system excited
Pu(t) = (W(t)| Bulw(t)) J @ Decay constant k = 2m\” 2

@ N differential equations

v
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Heat Conduction Model

1 : ; ;
Pi(t
> 0.8 1(t) |
£
3 06 | S i
S
04 | i
= P(t
2
a 0.2 ( 2“’ e
L e i
i -
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0 500 1000 1500

t >

Model Parameter

@ levels in the band n = 500
@ band width e = 0.05
@ coupling strength A =5-107°
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Heat Conduction Model
1 1 Energy and Transpo

Relaxation Scenario

M

1 : ; 1
Pi(t)

208 ] 208
506 | X g Q 06
: g
S04t f O 0.4
= IDQ(t) S o
ll L - w«““M 1 D_

02 L 02

™ o
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t J t >

Model Parameter

@ levels in the band n = 500
@ band width e = 0.05
@ coupling strength A =5-107°
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Heat Conductio el
Energy and Heat Transport
Relaxation Scenario B d the Design Model

Energy Transport

HAM rate equation

rate equation e = —K(P1 _ p2)

AE ® O exponential ddFt’
o —@— decay —2 = k(P - P)

uw=1 uw=2 dt
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Relaxation Scenario

Energy Transport

t Conductio

Energy and Heat

HAM rate equation

rate equation

AE ® 0 exponential
S0 —@— decay
B = uw=2

Energy Current

defined as the change of internal energy
U, in the two subunits

1<dU2 dUl)
dt dt

S0 = >

internal energy: U, = AEFR,

Michel, Gemmer, Mahler

Clie}

ar = —K(Pl — PQ)
dP.
d_tz = —K(PQ — Pl)

dt dt

Jl—)Q - (5

AQE(dPg dPl)

and with rate equation

iy = *I{AE(PQ _ Pl)

\
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Heat Conductio
1 1 Energy and Heat
Relaxation Scenario es

Energy Transport

HAM rate equation

dh

rate equation = —K(P1 — PQ)
AE ® O exponential ddFE
— 2 —@— decay d_; = k(P —P)
w= w=

\

Energy Current

defined as the change of internal energy AE /dP,  dP;
U, in the two subunits J1m0 = 7(? = ?)
Ldes  dor and with rate equati
— o == _ == quation
=n 2( dr ~ dt )
internal energy: U, = AEP, S0 = *KAE(PQ = P1)

\

Energy Fourier’s law

energy current oc energy gradient Energy Conduction Coefficient:

S50 = —k(Us — Ur) K= 27r>\2é
i
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Heat Conduction del
Energy and Heat Transport
Relaxation Scenario d the D n Model

Heat Transport
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Heat Conduction el
Energy and Heat Transport
Relaxation Scenario B nd the O n Model

Heat Transport

Fourier's Law

Jih = =K AT
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Heat Conductior 2|
Energy and Heat Transport

Relaxation Scenario d the Design Model

Heat Transport

Fourier’'s Law
=_0 T= Jinh = —Kin AT
% % Heat conductivity
N P Kth = KC

Kk energy diffusion constant
c heat capacity of subunit

Michel, Gemmer, Mahler
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Heat Conduction | |
Energy and Heat Transport

Relaxation Scenario

Heat Transport

Fourier's Law

Jih = =K AT

Heat conductivity

Kth = KC

Kk energy diffusion constant
c heat capacity of subunit

Heat Conductivity

16
@
é 10 Expectation (Peierls)
E @ small temperatures o T3
o @ high temperatures oc T -7 2
0

Heat Transport in Small Quantum Systems

Michel, Gemmer, Mahler




e NSPO
Relaxation Scenario Beyond the Design Model

Beyond the Design Model

Design Model @ |ocal energy and temperature
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Relaxation Scenario Beyond the Design Model

Beyond the Design Model

Design Model @ |ocal energy and temperature

@ full solution feasible
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Relaxation Scenario Beyond the Design Model

Beyond the Design Model

Assets

Design Model @ |ocal energy and temperature

Il . .
@ full solution feasible

: :
=5 =5 @ not a real microscopic model
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Relaxation Scenario

Beyond the Design Model

Assets

Design Model @ |ocal energy and temperature

Il . .
@ full solution feasible

: :
=5 =5 @ not a real microscopic model

@ large gap is not typical
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Relaxation Scenario

Beyond the Design Model

Assets

Design Model @ |ocal energy and temperature

Il . .
@ full solution feasible

: :
=5 =5 @ not a real microscopic model

@ large gap is not typical

General Requirements for a Heat Conduction Model

@ organize the microscopic system as a “net-structure” of subunits

@ high state density, weakly interacting subunits
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Relaxation Scenario

Beyond the

Design Model

(i% % %” @ full solution feasible
! AR @ ® - ®

4 . )
— — — @ not a real microscopic model

General Requirements for a Heat Conduction Model

@ organize

@ high state density, weakly interacting subunits

Spin Chains as Subunits

Design Model

@ |ocal energy and temperature

@ large gap is not typical

the microscopic system as a “net-structure” of subunits

diesadese > = |

statgdens\ty
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Relaxation Scenario

Spin Chain Model

uo3daup podsuel
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Relaxation Scenario

Spin Chain Model

uo3daup podsuel

Comparison of Theory and Schrodinger Dynamics

— reduced dynamics
— full dynamics

o
o]

o
o

@ normal transport behavior

@ heat conductivity as before
Ok = 27\’ =

Probability
o
E-

o
N
\

0

0 500 1000 1500
t
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Relaxation Scenario

Anisotropic Model

Coupling Model

— Heisenberg
—— random next
—— random over next

©
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Relaxation Scenario

Anisotropic Model

— Heisenberg
—— random next
—— random over next

©

3D Model

N
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Relaxation Scenario

Anisotropic Model

Coupling Model

— Heisenberg
—— random next
—— random over next

3D Model

N

Hamiltonian

I‘:I = I‘:I|oc ap lLAfHeis aF l‘:lrandl arF
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Relaxation Scenario Beyond the Design Model

Anisotropic Model

— Heisenberg
—— random next ° .
—— random over next

©

. i
3D Model

transport direction

Hamiltonian

I:I = I‘:I|0c ap I:IHeis aF l‘:lrandl arF
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Relaxation Scenario Beyond the Design Model

Anisotropic Model

— Heisenberg
—— random next ° .

—— random over next l
A

. i
3D Model

Hint

loc
transport direction

Hamiltonian

I:I = I‘:I|0c ap I:IHeis aF l‘:lrandl arF
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Energy and Heat Transport
Relaxation Scenario Beyond the Design Model

Anisotropic Model

— Heisenberg
—— random next °

—— random over next l
A

i
3D Model

Hint

loc
>
/‘/‘/ Perpendicular to Chains

l

-
Hamiltonian %@

I:I = I‘:I|0c ap I:IHeis aF l‘:lrandl arF

fransport direction
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Energy and Heat Transport
Relaxation Scenario Beyond the Design Model

Anisotropic Model

— Heisenberg

—— random next ®
—— random over next
i
3D Model

loc
>
/‘/‘/ Perpendicular to Chains

E

I:Iint

Hint

It

l

-
Hamiltonian %@

'LAI = ":Iloc arF I:IHeis arF l‘:lrandl arF lqloc
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Relaxation Scenario

Anisotropic Model

08 N\ =

06|
04FP

Probability

02

transport direction

NNANANL

reduced dynamics |
full dynamics

0 500

| ZANVANZANZAN

1000 1500 2000
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Heat Conductic
Energy and He 0
Relaxation Scenario Beyond the Design Model

Anisotropic Model

1 T T T

P1 —— reduced dynamics
c .B‘ 08 F full dynamics b
2 = 06 d
% 8 o0atP |
g ° 0.2 —
=1 n O
DA 2 o e L
/NN < 0 500 1000 1500 2000
h t

Parallel to Chains (Ballistic Transport)

-1 T
Q. —— reduced dynamics
> 0.8 +  full dynamics 7
=
= 06
O
T 04
2
a 02
0 I
0 100 200 300

transport direction t
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Relaxation Scenario Beyond the De5|gn Mode\

Summary

Bath Scenario
bath assisted transport of heat in e

small quantum systems ) o .
investigation of decay behavior of
small quantum systems

I3

P
n=1 p=2 p=N

@ ballistic and normal behavior

@ ballistic and normal behavior @ Fourier's Law

@ Fourier's Law
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