Local Equilibrium Aspects of Small Quantum Systems

SRR

S Mathias Michel, Jochen Gemmer and Giinter Mahler
“wwssn Institute of Theoretical Physics 1, University of Stuttgart

Introduction

We have been considering small quantum systems built up of several weakly
coupled subsystems. Despite the fact that the total system is described by
pure unitary Schrédinger dynamics, we find any single subsystem to be in
a thermal equilibrium state as theoretically predicted [1]. If we couple such
low-level systems additionally to an environment (many level systems under
full system Schrodinger dynamics or modeled by the Lindblad formalism)
the system is globally as well as locally at the same temperature, dependent
on the type and strength of the internal couplings. Within such a diminuti-
ve system also non-equilibrium properties like quantum heat conduction [2]
can be studied. Indeed, we have found a normal heat conductance for many
different internal coupling types, but also ballistic transport scenarios.
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Local Equilibrium Model
Here we investigate a chain of N weakly interacting subsystems with next
neighbor Heisenberg interaction,
Forster (only energy exchange)
coupling or a totally random in-
! ! ! AB teraction, according to the Ha-
N N N miltonian H = Hioec + Hint- Ad-
\ . / ditionally, the system is coupled
bath coupling at both ends to separate heat
baths with temperature Tean =
AT. The Liouville-von-Neumann equation for the density operator of the
system reads

internal interaction

=2 = £6 = (Loye + £1(Tmean + AT) + L2(Tmean — AT)) 5, (1)

with the coherent part
i
Loysp = —= |H,p
ysP 5 [H. 5]

and two incoherent Lindblad super-operators £, /5 at the respective tempe-
rature Thean = AT, modeling two heat baths. After a relaxation time the
system reaches a stationary local equilibrium state psiar With a constant
temperature profile and heat current. Taking the local energy expectation
value as a measure for temperature, the temperature difference between two
adjacent subsystems is given by (in units of AE)

ATt TT{<I:11($C) = I:Il(ci”;l))ﬁstat} -

The respective current operator can be derived from the equation of conti-
nuity

JSH. Fn—1, 71

i[H, Hl(étc)] = ju=1p) _ jGu,utl) ,
finding in case of Heisenberg as well as Forster (only energy exchange) in-

teraction N
Jlrptl) iCp (&(7“) &EriH—l) _ &Erm &£M+1)) )

In case of normal heat conduction the famous Fourier’s Law should hold
connecting local temperature difference and the current by

Tr {j(u‘kHrl)ﬁstat} — _gATUFD)

where k denotes the heat conductivity.

Perturbation Theory in Liouville Space

We consider as the unperturbed system the Liouville operator Lo = Lgys +
L1(Tmean) + L2(Tmean) with the two bath super-operators at the same tem-
perature. After relaxation the system is to be found in the stationary global
equilibrium state po. The eigensystem of L is given by Lo|p;) = l;|p;) for
3 =0,... ,n2N — 1 with I; < 0. Note that pp has to be the only eigenstate
with Iy = 0 and therefore represents a stable fixed point of the dynamics. Sin-
ce this basis is not orthogonal we need a dual basis finding 37 (5;)(p’| = 1.

As a perturbation we consider the activation of different bath temperatures
given by the Liouville operator

(AT, 1) = LT+ 5150 + £aT — SL 1)

AT\
2

= L. (T) + L2(T) + FE,

with the switch on function

0 t<O0

F(t) =O(=t)e' +O(t), with O(t) = {1 t>0"

Numerical Investigation

We show results for a numerical integration of the Liouville-von-Neumann
equation (1) of the system. Local temperature profile for different internal
couplings:
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Perturbed Density Operator

Starting from the past in a thermal equilibrium state pg, we assume the time
dependent state of the whole system to be

b= po+ Ap(t) .

Introducing this into the complete Liouville equation, supressing terms of
higher order in the perturbation, one finds the time evolution equation for

Ap(t), )
57 86(t) = LoAA(t) = L'(AT, t)po -

With a transformation similar to the one introduced by Kubo in Hilbert
space,
<0t (2 (e 0t np(1))) = 2 Ap(E) — LonA(E)
ot ot ’
one can integrate the differential equation using the special form of £, to
find the formal solution

ATAp

Ap(t) = —
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Plugging in the unit operator of Liouville space

ATX t A i .
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Ap(t) =
A(t) 5
and carrying out integration over ¢, we find
n2N s

J eldt — R
> (S + )@ Elpole) -

AT\
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Ap(t) =
j=1
Since we are interested in a local equilibrium state — a stationary state with

a constant current and temperature profile, which is reached after a certain
relaxation time we consider the limit of ¢ — oo
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Temperature Profile and Current

From the perturbed part of the stationary equilibrium state of the system
we derived the actual temperature profile and the respective current using

J="Tr {fﬁ} =Tr {j(ﬁo + Aﬁ)} =Tr {jA,s}
AT+ oy {Aﬁl(ﬁc'u-'—l)Aﬁ}

in perfect agreement with the numerical results for the concrete situations
above.

The most remarkable point here is the fact that the global temperature
difference AT is a parameter only. Numerically this is an attractive feature,
since a repeated diagonalization for different external gradients is not ne-
cessary any more. The current here is

Xa o< (#1€160)

B 0 a

P N SN PR DU

j=1

Without the need of any further consideration of the behavior within the
chain (linear temperature gradient, flat profile etc.) Fourier’s Law combining
the current and the external temperature gradient is shown to hold.




